Yield to Maturity Vs. Spot Rate



Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Furthermore, the current yield is a useless statistic for zero-coupon bonds.

Bond Yield Calculation on the BAII Plus Calculator


So kann man die zu erwartende Rendite leicht selbst berechnen. Kuponanleihen werden auch Standardanleihen genannt und sind die am weitesten verbreiteten Anleihen.

Im Gegensatz zu den sogenannten Zerobonds oder Nullkuponanleihen sind Kuponanleihen festverzinsliche Wertpapiere.

Der Kupon bezeichnet die Nominalverzinsung , also den Zinssatz, mit dem die Anlage fest verzinst wird. Die Nominalverzinsung gibt einen ersten Hinweis darauf, welche Rendite von einer Kuponanleihe zu erwarten ist.

Doch dieser Wert allein reicht nicht, um verschiedene Anleihen zu in ihrer Atraktivität zu vergleichen und ein passendes Investment zu finden. Kuponanleihen sind wie alle Wertpapiere an den Börsen täglich handelbar und damit auch Kursschwankungen ausgesetzt. Der jeweilige Kurswert kann mitunter stark von dem Nennwert — also dem Rücknahmewert — abweichen. Diese Differenz zwischen Kurswert und Nennwert gilt es ebenfalls zu beachten.

Bezieht man diese Werte und die Restlaufzeit in die Berechnung ein, erhält man die Effektivverzinsung der Kuponanleihe. Um die Effektivverzinsung einer Kuponanleihe zu berechnen, sind einige Informationen notwendig. The interest payments are known as coupons, and they are calculated by multiplying the par value by the bond return and dividing the interest payments over the given coupon frequency.

The yield to maturity is the interest rate used over the entire remaining period of the bond to determine the present value of the coupons and the maturity value. It represents the average investment return the bond will generate over the remaining term. For example, with a yield to maturity of 8. The spot rate is similar to the yield to maturity in that it is used to determine the fair market price of the bond. However, the spot rate differs from the yield to maturity in that it can vary from one period to the next as fluctuations in interest rates over the remaining bond period are anticipated.

The spot rate can be any rate for any time period in the calculation of the bond price. You may use current rates for a fixed period and then a different rate for the remaining years. For example, you may use an 8. TBD [1] http: Thanks for marking this as the answer.

How satisfied are you with this reply? Thanks for your feedback, it helps us improve the site. How satisfied are you with this response? In reply to I need help! WI's post on January 5, I have no idea where the number 2 comes from, and why it is used. Can you please explain this to me? I believe your presentation of the formula is mangled. But it appears that you are referring to a formula that approximates yield to maturity, to wit: In your original example, if the coupon frequency is once per year my original assumption: Compare with the "exact" result of about The best explanation of the formula that I found is "Approximation of Yield Maturity".

However, even that explanation needs to be "taken with a grain of salt"; that is, interpreted carefully, not read literally. I have only seen that approximation used with examples of bonds that pay interest semiannually twice per year, not annually as I assume.